Drugs for Dyslipidemias

HMG CoA reductase inhibitors (statins):
 atorvastatin, lovastatin, pravastatin, simvastatin

Bile acid-binding resins:
 cholestyramine, colestipol, colesevelam

Fibric acid derivatives (fibrates):
 gemfibrozil, fenofibrate
 (clofibrate is the prototype but use is discontinued)

Niacin (nicotinic acid)

Cholesterol Absorption Inhibitor:
 ezetimibe

Others:
 Antioxidants (vitamin E)
 Omega 3 fatty acids (fish oil)

AJ Davidoff '09

Medical Letters Treatment Guidelines February 2008
Dyslipidemias

Abnormal blood lipids
e.g., \uparrow cholesterol (CHL)
\uparrow triglycerides (TG)
\uparrow low density lipoprotein (LDL)
\downarrow high density lipoprotein (HDL)

\uparrow Risks of atherosclerosis (e.g., \uparrow CAD)
\uparrow Risk of pancreatitis (due to \uparrow TGs)
\uparrow Risk of liver disease

Often part of a cluster of risk factors for CAD:
- obesity, sedentary lifestyle, hypertension, diabetes
- elderly and postmenopause \uparrow risk of \uparrow CHL
Therapeutic goals

↓ blood LDL and TG, ↑ HDL

Ideal:
- total CHL 180-200 mg/dL
- LDL <130 mg/dL
- HDL > 60 mg/dL (may be protective)
- TG < 150 mg/dL

HDL < 40 mg/dL risk factor in men
< 50 mg/dL risk factor in women

Manage with diet and life style changes (preferably)
Control other risk factors (e.g., BP, diabetes)
Caution with certain drugs causing lipid changes:
 - Diuretics (thiazides)
 - β-blockers (non-selective; propranolol)
 - Oral contraceptives
Lipid Management Goals: National Cholesterol Education Program

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>LDL-C and non-HDL-C Goal</th>
<th>Initiate TLC</th>
<th>Consider Drug Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk: CHD or CHD risk equivalents (10-year risk >20%) and</td>
<td><100 mg/dL if TG >200 mg/dL then, non-HDL-C should be <130 mg/dL</td>
<td>≥100 mg/dL</td>
<td>≥100 mg/dL (<100 mg/dL: consider drug options)</td>
</tr>
<tr>
<td>Very high risk: ACS or established CHD plus: multiple major risk factors (especially diabetes) or severe and poorly controlled risk factors</td>
<td><70 mg/dL non-HDL-C <100 mg/dL</td>
<td>All patients</td>
<td>>100 mg/dL (<100 mg/dL: consider drug options)</td>
</tr>
</tbody>
</table>

CHD = coronary heart disease, ACS = acute coronary syndrome
TLC = therapeutic lifestyle changes

Types of hyperlipidemias

Primary (genetically determined)
- plasma CHL and/or TG

Try to establish etiology
 e.g., familial hypercholesterolemia
 ↓ LDL receptors

Secondary forms
Consequence of other conditions
 e.g., diabetes mellitus
 hypothyroidism
 alcoholism
 renal or hepatic disease
modified from Brenner Box 15-1
Pathogenesis of atherosclerosis

endothelial cell
prostacyclin (PGI₂)
(-) platelet aggregation

endothelial dysfunction
macrophage infiltration
*LDL oxidation (activation)

↑ platelet aggregation
macrophage → foam cells
release of chemotaxins
growth factors

VSMC proliferation
deposition of tissue

Brenner Fig 15-1
Inflammation, Atherosclerosis and CAD

Hansson NEJM (April) 352:16, 2005
Inflammation in Cardiovascular Disease including Atherosclerosis

Innate or natural immune response – first line of defense
limits vascular damage
confines pathogens
initiates vascular repair

Inflammatory biomarkers used for risk stratification:
Cytokines (IL-1, IL-6, TNFα, IL-18, MCP-1)
Acute-Phase Reactants (hs-CRP)
Endothelial Cell Activation (dysfxn) (vWF, ICAM-1, VC)
Oxidative Stress (MPO, oxLDL, PLA$_2$)

see note page for definitions

Inflammation is also associated with:
Hypertension
Insulin resistance/Obesity
Diabetes
Strategies for treating hyperlipidemias

↓ Food intake containing CHL

↑ Exercise

↓ Production of lipoproteins
 statins, niacin, fibrates
 (antioxidants?)

↑ Degradation of lipoproteins
 fibrates

↑ CHL clearance
 statins (↓ de novo synthesis)
 resins (↑ bile secretion, ↓ intestinal absorption)

↓ CHL absorption inhibitor (new class)
 Ezetimibe (↓ intestinal absorption)
Statins

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors

Indicated for hypercholesterolemia
(some also effective for hypertriglyceridemia)

modified from Brenner Fig 15-2
Therefore, individuals who lack LDL receptors may not benefit from therapy.
HMG CoA reductase inhibitors (statins):
- atorvastatin, lovastatin, pravastatin, simvastatin, rosuvastatin, fluvastatin

Differ in pharmacokinetics
- Lovastatin and simvastatin are pro-drugs
- Others are active parent compounds
- Most have short $T_{1/2}$ (except atorvastatin)
- Most metabolized by CYP450 enzymes

Adverse effects *(cerivastatin (Baycol) recalled in 2001)*
- Typically dose dependent
- Potential hepatic toxicity (but still considered very safe) – need to do LFT first, during and until good mx dose achieved
- Myopathies (range from muscle weakness to rhabdomyolysis)
- Drug interactions (e.g., interfere with warfarin metabolism)

Contraindications
- Pregnancies and children/teenagers

WHY? Hormones amuck
Drug Interactions with Statins

Optional information – for now!

Table 1. Some Inhibitors and Inducers of CYP3A4

<table>
<thead>
<tr>
<th>Strong Inhibitors</th>
<th>Moderate Inhibitors</th>
<th>Inducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atazanavir (Reytataz)</td>
<td>Amiodarone (Cordarone)</td>
<td>Bosentan (Tracleer)</td>
</tr>
<tr>
<td>Clarithromycin (Biaxin)</td>
<td>Amprenavir (Agenerase)</td>
<td>Carbamazepine (Tegretol)</td>
</tr>
<tr>
<td>Conivaptan (Vaprisol)</td>
<td>Aprepitant (Emend)</td>
<td>Efavirenz (Sustiva)</td>
</tr>
<tr>
<td>Imatinib (Gleevec)</td>
<td>Cyclosporine (Neoral)</td>
<td>Fosphenytoin (Cerebyx)</td>
</tr>
<tr>
<td>Indinavir (Crixivan)</td>
<td>Darunavir (Prezista)</td>
<td>Nafcillin</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>Delavirdine (Rescriptor)</td>
<td>Nevirapine (Viramune)</td>
</tr>
<tr>
<td>Itraconazole (Sporanox)</td>
<td>Diltiazem (Cardizem)</td>
<td>Oxcarbazepine (Trileptal)</td>
</tr>
<tr>
<td>Ketoconazole (Nizoral)</td>
<td>Erythromycin (Erythrocin)</td>
<td>Phenytoin (Dilantin)</td>
</tr>
<tr>
<td>Nefazodone (Serzone)</td>
<td>Fluconazole (Diflucan)</td>
<td>Phenobarbital</td>
</tr>
<tr>
<td>Nelfinavir (Viracept)</td>
<td>Fosamprenavir (Lexiva)</td>
<td>Primidone (Mysoline)</td>
</tr>
<tr>
<td>Posaconazole (Noxafil)</td>
<td>Grapefruit juice (8oz, 24-48 hrs)*</td>
<td>Rifabutin (Mycobutin)</td>
</tr>
<tr>
<td>Ritonavir (Norvir)</td>
<td>Verapamil (Calan)</td>
<td>Rifapentine (Priftin)</td>
</tr>
<tr>
<td>Saquinavir (Invirase)</td>
<td></td>
<td>Rifampin (Rifadin)</td>
</tr>
<tr>
<td>Telithromycin (Ketek)</td>
<td></td>
<td>Saint John’s wort</td>
</tr>
<tr>
<td>Voriconazole (Vfend)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Wilkinson GR. Drug metabolism and variability among patients in drug response. NEJM 2005, 352:2211-2221
Beneficial cardiovascular effects of statins:

- Most effective drugs for lowering LDL-C (CHL)
- Slow progression of atherosclerosis
- Reduce risk of CAD and other vascular diseases
- Reduce risk of cardiac mortality

Lipid lowering, anti-inflammatory, and reduce:
plasma viscosity, platelet aggregation, thrombin formation, C reactive protein*

*JUPITER trial, treated patients with normal LDLs (<130mg/dl) but high hsCRP (>2 mg/L), rosvastatin (20 mg/daily) vs placebo. Findings: hsCRP (1.8 vs 3.3mg/L) and LDLs (55 vs 109mg/dl), Tg (99 vs 118mg/dl), no change HDLs, reduced major CV events in healthy people with high hsCRP

Beneficial non-cardiovascular effects of statins:

• Potentially osteogenic (J Pharm Pharmacol Jan. 2006)

• May attenuate development of type 2 diabetes but not as a monotherapy (Am Heart J Nov. 2005)

Resins

(aka)

Bile-Acid Sequestrants

Indicated for hypercholesterolemia
Bile acid binding resins: cholestyramine, colestipol, colesevelam

Anion exchange resins
Bind to bile acids and salts in small intestine prevents
CHL reabsorption
–LDL receptors (liver) → ↓ blood LDL

Differ in formulation
Colesevelam (tablet), others are powders

Adverse effects and interactions
• ↓ absorption of fat soluble vitamins
• GI disturbances
• May increase TG (need to combine with nicotinic acid or fibrates)
• Cholestyramine and colestipol can bind to a number of
drugs (e.g., digoxin, warfarin, T4, statins) – stagger dosing by 2 hrs
• Colesevelam (newer drug) does not interfere with drug
Cholesterol Absorption Inhibitor (new class)

Ezetimibe

(only one on US market as of 2004)

- Inhibits intestinal absorption of dietary and biliary CHL
 - blocks uptake mechanism
- Metabolized to active glucuronide in small intestine and liver
- Excreted in stool (mostly)
- Decrease in total CHL (12%), LDL (17%) and TG (6%) as monotherapy
- Augments effects of statins on LDL lowering (e.g., combined with simvastatin 57%, compared to 44% with statin alone)

*ENHANCE trial (see notes pg)

Advantages:
- Well tolerated compared to resins
- No GI disturbances
- Does not interfere with drug absorption
- No long-term data yet!!!
Fibrates and Niacin
Indicated for hypertriglyceridemia

In Maine, large French Canadian population with severe hyperTG (>1000 mg/dL) - impaired lipoprotein lipase (LL)
Fibrates:
gemfibrozil, fenofibrate

(+) lipoprotein lipase and (-) VLDL synthesis → ↓↓↓↓ blood TGs

↑↑HDLs

(+) PPARα agonist (peroxisome proliferator activated receptor)
(transcription factor which + LL synthesis)

(+) stimulates fatty acid oxidation

Adverse effects

myopathies similar to statins; gemfibrozil (but not fenofibrate) inhibits statin metabolism, therefore ↑ risk

Contraindicated
pregnancy, nursing
hepatic disease
Niacin (nicotinic acid, vit B₃)
Vitamin with broad lipid lowering activity
(-) TG breakdown
 ↓ VLDL synthesis and release
 ↓ CHL (a little)
Also: ↑↑↑ HDL

Adverse effects
Prostaglandin mediated effects
 Intense flushing
 Pre-administer aspirin to reduce, or use extended-release niacin
(-) tubular secretion of uric acid: ↑ hyperuricemia (gout)
May exacerbate hyperglycemia (caution with diabetics)
Risk of myopathies and hepatotoxicity may increase in combination with statins
Adipose tissue

Nicotinic acid

FFA

Fibrates

TG

Oxidation

VLDL synthesis

HMGCoA

Cholesterol

STATINS

VLDL

via PPARα

FIBRATES

IDL

HDL

LDL

coronary disease

dietary cholesterol

Intestine

bile

UpTake

EZETIMIBE

RESINS

(L.H. Opie, Drugs for the Heart, 2004.)
Antioxidants:

- vitamin E
- ascorbic acid
- β-carotene

Concept:

(-) LDL oxidation → (-) foam cell formation → (-) plaque formation

Efficacy to reduce CV disease has not been demonstrated

Have been shown to improve some cognitive dysfunctions

(blueberries also efficacious - Jim Joseph, Tufts Medical Sch.)

American Heart Association advisory statement 2004
Antioxidant Vitamin Supplements and Cardiovascular Disease

Penny M. Kris-Etherton, PhD, RD; Alice H. Lichtenstein, DSc; Barbara V. Howard, PhD; Daniel Steinberg, MD, PhD; Joseph L. Witztum, MD; for the Nutrition Committee of the American Heart Association Council on Nutrition, Physical Activity, and Metabolism

As reviewed in the first AHA Science Advisory\(^2\) on antioxidant vitamins, epidemiological and population studies reported that some micronutrients may beneficially affect CVD risk (ie, antioxidant vitamins such as vitamin E, vitamin C, and β-carotene).

Collectively, for the most part, clinical trials have failed to demonstrate a beneficial effect of antioxidant supplements on CVD morbidity and mortality.

Summary
At this time, the scientific data do not justify the use of antioxidant vitamin supplements for CVD risk reduction.
Others:
Efficacy against dyslipidemia has been shown. However, always be aware of distinguishing risk reductions (e.g., lower TGs) vs outcome reductions

• Mediterranean-type diet
 (e.g., breads, fiber, fruits, vegetables)

• Fish oil; 3 omega fatty acids (↓TGs)
 • no adverse effects in combination with statins (Med Letters Nov. 2005)
 • >4g/day significantly lower Tgs, but primary end points (e.g., CVD) have not been measured (JACC 2008)

• Modest alcohol consumption

• Red juices, black tea, nuts (almonds)

• Estrogens (↑HDL) BUT no evidence of CV benefits, in fact may increase risk of deep vein thrombosis

Note: Dietary fish oil reverses insulin resistance and cardiomyopathy in rats (Davidoff et al. Am J Physiol. Endo and Metabolism (2004))
Summary of drug effects

<table>
<thead>
<tr>
<th>Intervention</th>
<th>CHL (total)</th>
<th>LDL</th>
<th>HDL</th>
<th>TG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diet alone</td>
<td>↓</td>
<td>↓</td>
<td>⇄</td>
<td>↓</td>
</tr>
<tr>
<td>Exercise</td>
<td>⇄</td>
<td>⇄</td>
<td>↑</td>
<td>↓↓↓</td>
</tr>
<tr>
<td>Resins</td>
<td>↓</td>
<td>↓</td>
<td>~↑</td>
<td>~↑</td>
</tr>
<tr>
<td>Statins</td>
<td>↓↓</td>
<td>↓↓↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Fibrates</td>
<td>↓</td>
<td>↓</td>
<td>↑↑</td>
<td>↓↓</td>
</tr>
<tr>
<td>Niacin</td>
<td>↓</td>
<td>↓</td>
<td>↑↑↑</td>
<td>↓↓↓</td>
</tr>
</tbody>
</table>
Lipid Management Pharmacotherapy (monotherapy)

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Total CHL</th>
<th>LDL</th>
<th>HDL</th>
<th>TG</th>
<th>Patient tolerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>19-37%</td>
<td>25-50%</td>
<td>4-12%</td>
<td>14-29%</td>
<td>Good</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>13%</td>
<td>18%</td>
<td>1%</td>
<td>9%</td>
<td>Good</td>
</tr>
<tr>
<td>Bile acid sequestrants</td>
<td>7-10%</td>
<td>10-18%</td>
<td>3%</td>
<td>Neutral or -</td>
<td>Poor</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>10-20%</td>
<td>10-20%</td>
<td>14-35%</td>
<td>30-70%</td>
<td>Reasonable to Poor</td>
</tr>
<tr>
<td>Fibrates</td>
<td>19%</td>
<td>4-21%</td>
<td>11-13%</td>
<td>30%</td>
<td>Good</td>
</tr>
</tbody>
</table>

AHA/ACC Guidelines for Secondary Prevention for Patients with Coronary and Other Atherosclerotic Vascular Disease: 2006 Update
Antihypertensive drugs affecting lipid profiles

Adverse lipid effects:
High dose thiazides increase TG
(low doses do not affect lipids)
β-blockers reduce HDL and increase TG

Beneficial lipid effects:
α-blockers (prazosin)
improves all lipid profiles
α-β-blockers (carvedilol not labetalol)
reduces TG, increases HDL and reduces TCHL

Lipid neutral cardiac drugs:
ACE inhibitors (captopril, lisinopril)
ARBs (losartan)
CCBs (calcium channel blockers)
Centrally active (methyldopa, clonidine)
Direct vasodilators (nitrates and hydralazine)
Website resources:
American Heart Association
 http://www.americanheart.org

National Heart Lung and Blood Institute (NIH)

ATP III at a glance

American College of Cardiology
Clinical Statements/Guidelines
http://www.acc.org/qualityandscience/clinical/statements.htm

American Diabetes Association
http://www.diabetes.org/home.jsp